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Abstract 

In this paper, the application of the SVM (Support Vector Machine) algorithm has been used for diagnosis and 
tests of analog electronic circuits. The diagnosis procedure belongs to simulation-before-test techniques, where 
simulations of the circuit under test (CUT) are performed at the before-test stage. Two examples have been 
verified for parametric and catastrophic faults in the time domain, but the conclusion is driven with the use of
assumed features. A fault-driven test (FDT) has been applied to a filter circuit and a specification-driven test 
(SDT) to a field-programmable analog array (FPAA). The SVM classifies features which are calculated from the 
time domain responses. Results obtained from the examples prove a  high detection and localization level of
circuit states with the use of the SVM classifier. 
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1. Introduction 

 
The still-increasing concentration of elements in electronic devices causes a big issue for 

test and diagnosis. If high frequency systems or data acquisition systems are considered, then 
two parts, the analog and digital ones, must be diagnosed. Digital circuit diagnostics have 
well-defined test procedures. As distinct from the digital side, mixed and specially analog 
circuits do not have any standard diagnostic approaches [1, 2]. However, there are a few 
fundamental books which describe the process of diagnosis of analog, mixed and digital 
electronic circuits [3,4]. Modern electronics requires convenient and simple tools for 
diagnosis of analog circuits which are integrated on the same substrate with digital ICs. 
Testing of the mixed (analog and digital) electronic devices is obligatory due to the cost of 
production which increases drastically (usually 10 times) on the following level: wafer (less 
than 1 cent), package, module, system, field service (up to thousands of dollars). If a new 
mixed IC is designed, new methods for diagnosis and test are necessary. Therefore, detection 
of a bad specification, as quick as possible, is the main possibility to cut manufacturing costs 
[1, 3]. 

In case of digital testing, the IEEE1149.1 standard are well described and commonly used. 
For analog systems, there is lack of standards which are frequent in use. However, the 
researchers have proposed the mixed signal boundary path IEEE1149.4 [3]. 

Two different approaches to analogue circuit testing can be distinguished [1]:  
1. Specification-driven test (SDT), where the system functionality is checked. The system 

under test must meet the device requirements in order to pass the SDT. 
2. Fault-driven test (FDT), where the main purpose is to find a faulty component which 

usually causes system failure. 



In the advance of integrated circuit (IC) technology, access to internal nodes is limited and 
specification-driven testing seems to be more practical. For FDT and SDT two techniques are 
possible: Simulation Before Test (SBT) and Simulation After Test (SAT) [1]. 

One of the major problems in the area of diagnosis is design for testability [5], where the 
test point selection [6, 7, 8] and the input source function [9, 10, 11] are optimized. For test 
point optimization an entropy measure is proposed in [7] and similar problem with use of 
genetic algorithm is described in [8]. The input source optimization can be divided into two 
domains. A piecewise linear (PWL) function is designed [12] in case of time domain and a 
multitone signal (sum of limited number of frequencies) is created in the AC domain [9, 10]. 
A heuristic algorithm of simulated annealing is proposed in [11] for optimal multitone 
selection. In case of the time domain, the output responses are acquired and classification is 
based on selected features (delay time, rise time, etc.) [12].  

The problem of analog fault diagnosis is very complex due to tolerances of elements and 
mainly continuous domain of circuit specification. The other well-known facts come from the 
size of the analog part which occupies a much greater area than digital components. For a 
mixed IC, it is estimated that only 10% of the substrate consist of analog part but the 
diagnosis cost exceeds 80% of the whole validation process (both analog and digital tests). 
Typically, the analog part consists of less than 100 elements and is responsible for acquiring 
information from the surrounding world (e.g. MEMS) or/and performing pre-processing 
operations on the analog signal (e.g. antialiasing filter). The circuit responses are measured 
for the selected test nodes in the predefined domain. A DC analog fault dictionary 
determination is proposed in [13]. In order to enhance the accuracy of classification, a number 
of soft computing algorithms can be applied [14, 15, 16]. Another reason for applying fuzzy 
logic is the masking effect of analog elements which leads to an ambiguity region [3]. 
Historically, the ambiguity region equals 0.7V for DC domain circuits, which means if the 
voltage in a particular node for at least two circuit states is less then 0.7 then the states are not 
separable. Nowadays, researchers apply the Monte Carlo analysis more frequently in order to 
determine an ambiguity region for a test point [10, 12]. The idea of the ambiguity region is 
presented in Fig. 1.  

 
Fig. 1. Exemplary circuit states for voltage distribution and the frequency equals 1kHz . 

 
According to Fig. 1, it is impossible to separate states: (S0; S1) and (S2; S3) and (S3; S4) 

because there is no free space between them. On the other hand, states (S2; S4) are separable. 
A fault represented by S5 may be located by the use of single frequency (1kHz). Three other 
states S6, S7 and S8 mask each other, so other test point or more frequencies are required to 
locate these faults. 

There are a number of artificial intelligence (AI) classification methods [14, 17, 22] which 
provide significantly better classification results compared with the classical methods [13]. 
Aminian in [17] and Kuczyński in [20] propose a wavelet transform for pre-processing and 
justify better diagnosability of the electronic systems. More, a neural network is designated 
for the purpose of diagnosis of the single [17] and global parametric [22, 25] faults. Another 
technique for fault diagnosis has been proposed in [18], where measurements are transformed 
in multi-dimentional space. An algorithm for multiple fault diagnosis has been described in 
[21], the method is based on very precise measurements at test points. 



The SDT for a field-programmable analog array (FPAA) is proposed in [19]. The authors 
present a diagnosis method with the use of the internal structure of the hardware. Hardware 
implementation of the built-in type test is proposed in [23, 24]. A very interesting approach is 
described by Toczek and Kowalewski in [23] which evaluates nonlinearities based on built-in 
test scheme. 

The main disadvantage of AI algorithms is non deterministic behavior, which often leads 
to unacceptable deviation of results (an AI algorithm for exactly the same data creates two 
different, but good results). On the contrary, any deterministic method for the same input will 
create exactly the same output results [9, 14, 21]. 

Yet, the SVM algorithm [26-29] is applied for soft and hard faults diagnosis in analog 
electronic circuits. In this article, the time domain response for unit step excitation as well as 
soft and hard fault injection are considered. In the next paragraph the application of the SVM 
to analog fault diagnosis is presented. Next, two examples of different type are evaluated: the 
first one is simulated in a PSpice circuit simulator and the second one with the use of FPAA. 
 
2. Application of the SVM algorithm to Analog Electronic Circuit Diagnosis  
 

In this paragraph, the procedure for circuit diagnosis with use of the SVM algorithm is 
described. At the before-test stage, the following questions and statements have to be 
considered [1-3].  
1. What are the fault types in the circuit? How is the type of fault modelled? How many faults 

occur simultaneously? Considering these questions, two types of faults have been assumed: 
soft and hard type of discrete elements. Soft (parametric) faults have been simulated as a 
50% deviation greater and lower with respect to the nominal value. Hard (catastrophic) 
types of fault have been simulated by adding 1010 Ω resistance in series for open element 
or 10-2 Ω resistance in parallel for modeling a short. Basically, a single fault occurrence is 
investigated.  

2. Define circuit states for all selected faults (hard and/or soft): 
 

 F={f0,...,fS-1},  (1) 
 
where f0 is a healthy state, S – the number of considered states. 
The SVM algorithm is working for two classes, so S circuit states lead to N classification 
functions (see eq. 2 and 3) depending on test strategy.  
a. Detection of a single fault. A healthy state f0 must be isolated from all other states. 

Then, the total number of decision functions is one: 
 

 N=1. (2) 
 

b. Localization of a single fault. Yet, the SVM procedure must be divided into a few 
steps in order to classify the multi-class data. At the first stage, a particular class 
should be isolated from other classes. Then, the second class is separated from all 
other classes, etc. In order to perform multi-class classification, an N number of SVM 
set have to be learnt. The number of decision function can be obtained from the 
formula: 
 SN = , (3) 
 

 where S is the number of circuit states. 
3. What is the domain for diagnosis? A test engineer considers the DC, AC or time domain 

depending on the circuit structure, circuit behavior, or circuit performance. In this paper 
the time domain test has been applied, however the SVM algorithm can be applied in other 
domains. 



Input signal in the time domain ( ) ( )ttuin 1=  which produces a response in a test point i 
( )tui . If the SBT stage is considered, then S simulations should be performed in order to 

calculate nominal values of characteristic parameters of the response for each circuit state. 
For that case the input and output signals create vectors of length L: 

 

 ( ) ( ) ( )[ ]Linininin tututuu ,...,, 21= , (4) 
 

 ( ) ( ) ( )[ ]Liiii tututuu ,...,, 21= , (5) 
 
where i=1,…,P – the total number of accessible test points.  

4. How many test points are accessible? For some systems, only input and output pins (gates) 
are free to measure. For other CUT, a bed of nails is mandatory in order to acquire signals 
from more test points, then a quite precise diagnostic can be performed. The presented 
method examines the output time domain response (P=1) for a unit step excitation: 

 

  ( ) ( ) ( )[ ] outL utututuu == 121111 ,...,, . (6) 
 
5. Create an ambiguity region for all circuit states by analyzing a number (M) of Monte Carlo 

runs for each circuit state responses in time domain which create a set of responses for a 
circuit state fi: 
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 The upper and lower envelopes of the output responses are calculated based on eq. (7): 
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where i=1,…, M. 
6. Select features of the time response for evaluation and classification. It is much easier and 

more convenient to evaluate a reduced number of data (features) than vectors acquire in the 
time domain (usually thousands of points). A feature is calculated for each circuit state 
considered which gives characteristic values of all selected features (maximum, minimum 
and nominal):  
 [ ]T

j AAAA ,...,, 21= , (8) 
 
where each feature is described by three characteristic values for a state j: 
 

 { }minmax ,, ii
nom
ii AAA=A  (9) 

 
and T is a number of features selected for all states. 
Exemplary features in time domain are: rise time of the first extreme, number of extremes, 
derivative of the rise time, overshoot, etc. Because the MC analyses are performed, the 
maximum, minimum and nominal values for each attribute can be formulated. The features 
are linked with the circuit states and then the SVM algorithm builds decision functions 
based on selected features. Some typical features are as follows: 
− A1= ( )constout tu  − voltage value for time tconst;  
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− A4= ( ){ }iout tumax  − maximum voltage value; 
− A5 = voltage difference between two first extremes; 
− A6 = time difference between two first extremes; 
− A7 = gradient value [V/s], the slope of the characteristic.  
− A8 = df damping factor of decaying oscillations, which is calculated as follows: 
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The values V1 and V2 are measured for two peaks, as can be seen in Fig. 2. 
 

 
Obviously, a limited number of features occurs for a circuit under test, i.e. the damping 
factor of oscillations cannot be observe in the first-order circuits. 

7. Create decision functions with use of the SVM algorithm. The main goal of the SVM 
algorithm [26, 29] is to create N decision functions (classifier) which will separate data 
points belonging to constant number of classes (S − number of classes). The SVM 
algorithm has a number of advantages: it is deterministic and creates an optimal sub-plane 
which separates data points from different classes. They are currently the best-known 
classifiers on a well-studied hand-written-character recognition benchmark [26]. 
To make the method robust, two features out of T have been taken into consideration 

during a single optimization process. Decision functions have been designed for a pair of 
features which have been chosen from set A={A’,A’’}. A number of classifiers relate to the 
level of diagnosis, and it is described by a number of N (see eq. 2 and eq. 3). As mentioned 
before, the HTRBF (Heavy Tailed Radial Basis Function) kernel function has been utilized in 
the SVM algorithm which gives two more parameters and degrees of freedom, namely a and 
b. Based on the a, b parameters and chosen features, the test designer decides what the best 
features and parameters a, b are. Both parameters are chosen experimentally for presented 
later benchmarks. 
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        Fig. 2. Calculation of the damping factor.



 
 

In order to construct the  SVM classifier, a number M of Monte Carlo analyses for each 
state have to be simulated. Yet, the total number D of a feature A’ is a product of M analyses 
and circuit states S (D=MS). 

Let us consider a linear separable problem. According to Fig. 3, there can be an infinite 
number of classification function (solid and dash-dot lines) but only one will satisfy the 
maximum margin distance M between two classes (solid one). The boundary and margin lines 
can be defined: 
For class „black” (can be considered for damaged circuits): { }1: +=+⋅ bw AA .  (11) 
For class “white” (can be considered for healthy circuits): { }1: −=+⋅ bw AA . (12) 
For points within margin: { }11: +<+⋅<− bw AA , (13) 
where: A – is a vector of features, w – is perpendicular to the “black” and “white” lines. So, 
the problem is to find the solution to the following system of equations: 
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If the number of data is D then the number of constraints is also D. If we assume a data set: 
 

 ( );      1      1,..., .k k ky where y and k D= ± =A  (15) 
 
Then constraints are described as follows: 
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 (16) 

 
Now, any method, like quadratic programming (QP), can be utilized in order to find the 

maximum margin M in terms of w and b. The quadratic optimization criterion is: 
 

 ww ⋅min  (17) 
 

QP is a well-studied class of optimization algorithms to maximize a quadratic function of 
some real-valued variables subject to linear constraints [22]. It works very well if all data 
points are in the correct half-plane. However, the above example is very simple to understand, 
but not realistic. Real world systems do not offer data which are linearly separable. Hence, 

         
Fig. 3. Linear classifier for two classess in two dimensional plane. 
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there is no opportunity to create a linear decision function for dividing the space into two 
classes with 100% efficiency. For this reason, the parameter C (distance of error points to 
their correct place) responsible for a misclassification measure has been introduced to the 
SVM algorithm [4, 24]. According to (15), there is still the same amount of data but linearly 
inseparable (assume data with noise). For this case, the constraints equations are: 
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So, the number of constraints increases to 2D and the quadratic optimization criterion is 
changed into: 
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Another important property of the SVM flows from its kernel function, which allows 

transformation of the input space into a feature one. Non-linear mapping gives amplification 
of important features and attenuation of insignificant ones. Usually, the kernel mapping 
function causes linearity of the input problem in a new, higher dimension, space [28].  

In order to find the optimal separating function, the following optimization problem has to 
be solved: 
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where:  
− α − Lagrange multipliers; 
− y − classes, e.g. { }1,...,3,2,1,0 −= Sy , 
− ( )lk AA ,Φ  − kernel function, e.g. HTRBF: 
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where a, b are parameters and ρ=1. 
Subject to the following constraints: 
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where: C is the measure of misclassification, D is the number of training data. Datapoints 
with αk>0 are the support vectors. 

Afterwards, two parameters have to be defined: 
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K αmaxarg= . 

Then the classification function is done with: 
                                                    ( ) ( )bbf −⋅= AwwA sgn,, .                                                (25) 

 



3. Computational Examples  
 

The procedure presented in the previous section has been implemented in Matlab 
environment as m-files. Pspice [27] has been called from m-scripts in order to perform 
simulations of the exemplary circuits for all states considered. 100 Monte Carlo simulations 
have been performed for each state. 
 
3.1. Example 1 
 
Considering circuit in Fig. 4, a fault driven test has been applied and the following hard and 
soft faults have been assigned:  
− Fhard={fault-free; R1open; R1short; R2open; R2short; RAopen; RAshort; RBopen; RBshort; C1open; C1short},  
− Fsoft={fault-free; R1high; R1low; R2high; R2low; RAhigh; RAlow; RBhigh; RBlow; C1high; C1low}. 
 

                           
 

The aforementioned parametric and catastrophic faults in all passive elements have been 
investigated, where subscripts:  
− short – parallel resistor with “short” element of 10-2 Ω;  
− open – series resistor with “open” element of 1010 Ω;  
− low – nominal value of a particular element multiplies by 0.5;  
− high – nominal value of an element multiplied by 1.5.  

Tolerances of undamaged elements are as follows: capacitor tolerance is 3% and resistor 
tolerance is 5%. 

The circuit has been driven by unit step excitation and responses have been measured at 
the output node. Fig. 5 presents circuit responses for exemplary parametric faults and the 
healthy circuit response (thicker line). Next, a set of features A={A1,…,A8}, based on the 
output response, have been selected: 
− A1=Vt1 voltage value for time t1=350 µs (steady state value);  
− A2=Vt2 voltage value for time t2=34 µs (first maximum occurrence for nominal response) 
− A3=Vmax1 voltage value of the first maximum (overshoot);  
− A4=tmax1 time of the first maximum;  
− A5=Vmax maximum voltage value; 
− A6=∆Vmax1 voltage difference between two first extremes; 
− A7=∆tmax1 time difference between two first extremes; 
− A8=gradient value [V/s], the slope of the characteristic. 
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Fig. 4. Example 1. 



                                  
 
Two sets of features have been arbitrarily selected, first for catastrophic faults 

classification Acat={A1, A2, A3, A4, A5} and the second set for parametric faults classification  
Asoft={A1, A6, A7, A8}.  

Using MC analysis, the boundary values of all features from set Acat and Asoft with respect 
to each circuit state Fhard and Fsoft have been designated and gathered in Table 1 and 2, 
respectively. The boundary values for each circuit state give the possibility to define an 
insensitive margin, where a particular state cannot be isolated from the other if both 
deviations overlap each other. The nominal point of the state (pattern) is defined by the 
nominal values of features.  

Values included in both Tables 1 and 2 have been utilized for building SVM classifiers. 
Each fault (circuit state) is represented by three characteristic values of every feature. There 
are many kernel functions; however, we have chosen the HTRBF function because of the 
complex character of input data and good enough properties. The kernel function requires two 
parameters a and b while processing the decision function. The parameters should be adjusted 
during the learning process in order to receive the best-quality classification. There is no 
common principle for determination of a and b, so we have to limit the universe for both 
parameters within 0.1 and 2 with a step of 0.1. All combinations of parameters a and b have 
been checked and selected together with the obtained results; they are presented in Tables 3 
and 4 for catastrophic and parametric fault localization, respectively. 

A detection graph for two features has been shown in Fig. 6. It indicates two circuit states: 
a healthy (in the middle) and all damaged ones with respect to features A2 and A4. Between 
these classes (states) an ambiguity region exists where the correct assignment is impossible, 
however incorrect classification is less then 1%.  

Figs 7 and 8 present the localization of catastrophic faults in a two-dimensional plane, 
namely feature A3 versus feature A4. In order to clarify Fig. 7, the rectangular area is zoomed 
and shown in Fig. 8. There is not only one area for some circuit states, which means they 
cannot be grouped into one “solid” area with the use of the features presented. It is very good 
behavior of the SVM algorithm because classic algorithms of data mining (like the nearest 
neighbourhood method) tries to group all similar patterns. 

 
 
 
 
 
 

Fig. 5. Circuit responses for parametric faults. 

Nominal 



 
Table 1. Characteristic values of features for selected catastrophic faults. 

 Feature R1short R1open RAshort C1short C2open healthy 
A1 [V] -13,5 1,4 14,1 1,4 0,002 1,4 

A2 [V] -13,5 1,39 14,1 1,36 0,001 1,44 

A3 [V] 0 1,2 14,1 1,4 0,005 1,47 

A4 [µs] 0 35 Inf Inf 51 76 
Nominal value 

A5 [V] -13,5 1,41 14,3 1,4 0,247 1,47 

A1 [V] -13,5 1,34 14,1 1,33 0,002 1,33 

A2 [V] -13,5 1,32 14,1 1,28 0,001 1,36 

A3 [V] 0 1,1 14,1 1,33 -0,01 1,37 

A4 [µs] 0 34 Inf 123 29 63 

Minimum 
value 

A5 [V] -13,5 1,34 14,2 1,33 0,226 1,37 

A1 [V] -13,4 1,48 14,1 1,47 0,002 1,48 

A2 [V] -13,4 1,47 14,1 1,44 0,002 1,51 

A3 [V] 0 1,27 14,1 1,47 0,005 1,58 

A4 [µs] 0 38 Inf Inf 63 89 

Maximum 
value 

A5 [V] -13,4 1,5 14,3 1,47 0,27 1,58 

 
Table 2. Characteristic values of features for selected parametric faults. 

 Attribute R1low R1high RAlow C1high healthy 
A1 [V] 1,4 1,4 1,8 1,4 1,4 
A6 [V] 1,29 1,41 1,98 1,54 1,4 
A7 [µs] 53 80 65 62 70 Nominal value 

A8 [V/s] 0,03 0,03 0,05 0,03 0,03 
A1 [V] 1,34 1,34 1,72 1,33 1,33 
A6 [V] 1,23 1,32 1,8 1,42 1,3 
A7 [µs] 45 72 49 57 58 

Minimum 
value 

A8 [V/s] 0,03 0,02 0,04 0,02 0,03 
A1 [V] 1,48 1,48 1,88 1,47 1,48 
A6 [V] 1,39 1,54 2,2 1,7 1,49 
A7 [µs] 72 96 71 83 83 

Maximum 
value 

A8 [V/s] 0,04 0,03 0,06 0,04 0,04 
 

                                            Fig. 6. Detection graph for catastrophic faults. 
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The final conclusion of the presented procedure is a pair of features and parameters a, b of 
the HTRBF kernel function which gives the best diagnostic results. An exemplary set of 
features and parameters for detection is shown in Tables 3 and 4 for catastrophic and 
parametric faults respectively. Obviously, all combinations of two features have been 
evaluated but only the chosen ones are listed in Tables 3 and 4. The classification results for 
other combinations are worse than presented. 

 
 

                                    

 

                                     

 
Table 3. Results obtained for detection (localization) of catastrophic faults. 

Classification results Features 
HTRBF 

 parameter  a 
HTRBF  

parameter  b Detection [%] Localization [%] 
A1 A2 1,0 (0,8) 2,0 (2,0) 96,1 48,1 
A1 A3 0,7 (0,2) 2,0 (2,0) 98,4 70,5 
A1 A4 0,1 (0,3) 1,2 (0,2) 94,6 90,8 
A1 A5 0,4 (0,2) 2,0 (2,0) 88,4 64,6 
A2 A3 0,9 (0,1) 2,0 (2,0) 87,0 72,3 
A2 A4 0,1 (0,1) 2,0 (1,2) 99,2 81,3 
A2 A5 0,1 (0,1) 1,2 (2,0) 78,3 66,1 
A3 A4 0,1 (0,1) 1,2 (0,4) 91,5 99,2 
A3 A5 0,1 (0,1) 1,4 (2,0) 82,5 70,1 
A4 A5 0,1 (0,1) 1,8 (0,4) 98,3 92,0 

 
 
 
 
 

 

Fig. 8. Area selected in Fig. 7 
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Fig. 7. Diagnosis plane for selected catastrophic faults. 
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Table 4. Results obtained for detection (localization) of parametric faults. 

Classification results Features 
HTRBF 

 parameter  a 
HTRBF  

parameter  b Detection [%] Localization [%] 
A1 A2 0,1 (0,3) 1,4 (2,0) 71,3 20,0 
A1 A3 0,5 (0,2) 1,8 (2,0) 80,8 34,7 
A1 A4 1,0 (0,7) 1,8 (1,0) 80,5 52,2 
A2 A3 0,6 (0,1) 2,0 (0,4) 76,6 52,2 
A2 A4 0,5 (0,9) 2,0 (2,0) 71,8 30,0 
A3 A4 0,6 (0,1) 2,0 (1,0) 74,2 36,7 

 
Each row of the table consists of two features, parameters a and b for HTRBF kernel and 

efficiency of detection and localization. Columns with parameters a and b have two values, 
where the first one is related to detection and the value in brackets refers to localization. 
Classification results are determined on the basis of 100 Monte Carlo simulations for each 
circuit state. 

The test engineer can choose a pair of features which gives best accuracy in testing and 
diagnosis for parametric and catastrophic faults. In case of catastrophic faults, the best 
accuracy for testing is given by  features: A2, A4 while for localization: A3 and A4. In case of 
parametric faults, the highest accuracy is given by features: A1 and A3. Finally, for localization 
of soft faults A1 and A4 have been chosen. The worst diagnostic results have been obtained for 
features A6, A7, A8 and therefore they are not printed in the tables. 
 
3.2. Example 2 

 
The second example has been created in the field programmable analog array (FPAA) as a 

fourth-order circuit which has been composed with three blocks:  
− low pass bilinear filter (LPF) of 100 kHz cutoff frequency – first-order circuit; 
− band stop biquadratic filter (BSF) of 50 kHz notch frequency and quality factor of 1 – 

second-order circuit; 
− high pass bilinear filter (HPF) of 10 kHz cutoff frequency – first-order circuit. 

The circuit is presented in Fig. 9, where the aforementioned three blocks are excited by a 
step function and the time domain responses after each block are shown with the use of the 
built-in oscilloscope. The main aim of the example is to separate a non-faulty circuit state, 
which is represented by nominal values of all blocks within all other states based on the 
output response in the time domain. Parameter variation of all blocks is gathered in Table 5.  

According to the output time-domain response, similar features have been selected, namely 
A1-8. Now, we consider specification-driven test based on the set of features for two different 
approaches:  
1. Detection of a healthy state (nominal values of all blocks) from all other states. Hence, the 

circuit states are: F1={CUThealthy; CUTfaulty}. The circuit is considered as healthy if and 
only if: 

                            { }1 , 10 , 50 , 100 000 ===== BSFHPFBSFLPFhealthy QkHzfkHzfkHzfCUT . 
 

2. Localization of a healthy block (nominal values of a single block) from all other states:  
 

                                    F2={CUThealthy; LPFhealthy; BSFhealthy; HPFhealthy ; fault(s)},   
      where: 
 

     { } { } { }kHzfHPFQkHzfBSFkHzfLPF HPFhealthyBSFBSFhealthyLPFhealthy  10   ;1, 50   ; 100 000 ======= . 
According to Table 5, the number of combinations flows from the range and step of 

considered circuit parameters (5 values for each frequency and 3 values of the quality factor) 
and it equals 3·53=375. A total of 375 configurations have been performed and only one 



combination satisfies CUThealthy for detection. Similar for localization, where 4 circuit 
combinations should be isolated from the rest of simulations. 

Then, the SVM algorithm has been applied and the results for detection and localization 
are: 
1. The healthy state can be isolated with the use of two features: {A1 A2} or {A1 A3} or {A1 

A4} or {A2 A3}. 
2. All blocks have been localized correctly with features: {A1 A2} or {A1 A3} or {A2 A4} or {A3 

A4}. 

 
          

Fig. 9. Exemplary circuit built in FPAA and simulation results for nominal parameters. 
 
The results obtained prove correct diagnosis with the use of the presented features together 

with the SVM algorithm. Thus, a 100% efficiency has been achieved for the aforementioned 
features. Once again, features A6-8 do not give good enough accuracy for diagnosis, however 
for other circuits they might carry important diagnostic information.    

 
         Table 5. Characteristic parameters of blocks for example 2. 

         Block 
 
Param.  LPF  BSF  HPF 
 Min Nom Max Step Min Nom Max Step Min Nom Max Step 

f0 [kHz] 80 100 120 10 30 50 70 10 5 15 25 5 
Q[-] Not concerned 0.5 1 1.5 0.5 Not concerned 

 
4. Conclusions  

 
The application of the SVM algorithm to fault diagnosis in analog electronic circuit has 

been presented in this paper. The SVM has been applied for the fault-driven test (FDT) and 
the specification-driven test (SDT). For FDT a filter has been investigated for both, 
parametric and catastrophic faults in all passive elements. Detection and localization of a 
single fault give an accuracy of more than 90% and 70%, respectively. In case of SDT, FPAA 
with predefined configuration has been considered and again, detection and localization of 
selected states are correct with the use of the features proposed. The weakest point of the 
applied procedure is determination of the kernel function and automatic selection of features. 
Moreover, for a kernel function some additional parameters should be usually defined. 
Unfortunately, there is lack of algorithms which can be introduced in order to set not even the 
best kernel function but also its parameters. On the other hand, it gives another degree of 
freedom for test engineer who can manipulate with the aforementioned parameters based on 
his experience for the best diagnosis results. Nevertheless, the classification of CUT states 
with use of the SVM algorithm is very effective and can be applied in a real environment by 
vendors because it classifies circuit states unequivocally and takes into account tolerances of 



elements and after all it is a deterministic method. In other words, the classifier produces 
exactly the same decision functions for exactly the same input vectors. The inaccuracy can be 
further reduced by using other kernel functions and it will be under research in the future.  

Contrary to artificial intelligence methods like neural networks, there is no influence of the 
training process on the final result which is very important behavior from a practical point of 
view. The algorithm is to be applied in the real environment with use of the analog tester that 
will be built by the authors in the future. 
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